Refraction

1a Using a ruler, draw on the diagram below the path of the blue ray of light as it passes through the prism and onto the screen:

- b Show, by labelling on the diagram, the two angles where the ray is refracted.
- c i If the ray of blue light were replaced by a ray of white light, what would you see on the screen?
 - ii If a red filter was then placed between the prism and the screen, what would you see on the screen?
 - iii Explain fully how the red filter causes the change you described in part (ii).

2 Mirrors are made from very smooth polished metal. Most mirrors have a sheet of glass in front of the metal surface, as in the diagram below.

a Give **two** reasons why a glass sheet is put in front of the metal mirror surface.

- b Using a ruler, draw on the diagram the complete path of the light ray reflected from the mirror.
- The **refractive index** (n) of a transparent substance is a number which describes how much a light ray is bent when it enters the substance from the air, which is given a refractive index n = 1.0. Diamond, for example, bends light a lot; it has a refractive index n = 2.4. The formula which you can use to calculate the refractive index of a substance is given by:

 $n = \frac{\text{Speed of light in air}}{\text{Speed of light in substance}}$

- a If the speed of light in air is 300 000 000 m/s and in water is 225 000 000 m/s, calculate the refractive index of water.
- b If n = 1.5 for glass, calculate the speed of light in glass.

Sound

1	Sound waves are 'compressions' and 'rarefactions' of air. Compression means that the air particles
	are being squashed together. What does the word 'rarefaction' mean?

An object which is vibrating causes compressions and rarefactions of the air. The 'twanging' of a ruler on the edge of a table, as shown in the diagram, causes the ruler to vibrate and make a sound. What other objects can you find at home that vibrate? Name at least three and say exactly what is vibrating.

.....

3 The frequency of a sound wave is the number of vibrations which occur in one second. The unit of frequency is the *hertz* (Hz). Find out why this name was given to the unit of frequency.

4a What is the name of the curve (or wave) shown in the diagram?

b If the speed of the wave is 500 m/s, calculate its wavelength. (Hint: Speed = Wavelength x Frequency.)

.....

- 5 The table shows the speed at which sound travels through different substances:
- a Does sound travel fastest through solids, liquids or gases?

b	Calculate approximate values for the speed of
	sound in 1:1 mixtures of:

Substance	Speed of sound (m/s)
Alcohol	1430
Nitrogen	354
Oil	1460
Steel	5980
Water	1510

i	alcohol and water	
---	-------------------	--

ii	alcohol and oil

iii oil and water.

More electrical circuits

1 Look at the electrical circuit and then fill in the table below with the words 'ON' and 'OFF'.

Switch A	Switch B	Lamp	Motor
Open	Open		
Open	Closed		
Closed	Open		
Closed	Closed		

2 Diagram A shows two identical lamps connected in a parallel circuit. Diagram B shows two of the same identical lamps connected in a series circuit.

- a What is the voltage across lamp **R** in diagram **A**?
- b What is the voltage across lamp **S** in diagram **A**?
- c What is the voltage across lamp **P** in diagram **B**?
- e i In diagram **A** what current flows through lamp **R**?
 - ii In diagram **A** what current flows through lamp **S**?
- f i In diagram **B** what current flows through lamp **P**?
 - ii In diagram **B** what current flows through lamp **T**?
- g Is lamp **R** brighter, dimmer or the same brightness as lamp **S** in circuit **A**?
- h Is lamp **P** brighter, dimmer or the same brightness as lamp **T** in circuit **B**?
- i Looking at both circuits, write down which two lamps are the brightest of all four.

3 Calculate the resistance of the heater in the circuit below.

.....

.....

4 In the circuit below, imagine that a piece of copper wire is connected between point $\bf R$ and point $\bf S$.

- a Which lamps, if any, will be lit?.....
- b The wire between $\bf R$ and $\bf S$ is now removed and another one is put in which connects point $\bf M$ with point $\bf P$. Which lamps, if any, now light up?.....

The wire connection between M and P is now removed. The switch is closed and both lamps light up, but not very brightly. A wire is then put in to connect point P with point S, giving the circuit as shown below:

- c What is the appearance of lamp A now?
- d What is the appearance of lamp **B** now?....
 - The wire connection between point $\bf P$ and point $\bf S$ is now removed and a wire is connected between point $\bf R$ and point $\bf S$.
- e What is the appearance of lamp A?
- f What is the appearance of lamp B?....